TO‘RT O‘LCHАMLI NILPOTENT UNAR LEYBNITS АLGEBRALARINING TASNIFI
Maqola haqida umumiy ma'lumotlar
Ushbu maqola 4 o‘lchamli nilpotent unar Leybnits algebralarining tasnifiga bag’ishlangan bo’lib, izomorfizm aniqligida 10 bitta parametrli va 12 ta parametrsiz algebralar olingan.
[1] Abdelwahab H., Calder´on A.J., Kaygorodov I., The algebraik and geometrik classification of nilpotent binary Lie algebras, International Journal of Algebra and Computation, 29 (2019), 6, 1113–1129.
[2] Abdurasulov K., Kaygorodov I., Khudoyberdiyev A., The algebraik and geometrik classification of nilpotent Leibniz algebras.
[3] Albert A., On the power-associativity of rings. Summa Brasiliensis mathematicae, 2 (1948), 2, 21–32.
[4] Alvarez M., Fehlberg J´unior R., Kaygorodov I., The algebraic and geometric classification of Zinbiel algebras, Journal of Pure and Applied Algebra, 226 (2022), 11, 107106.
[5] Alvarez M.A., Kaygorodov I., The algebraik and geometrik classification of nilpotent weakly associative and symmetrik Leibniz algebras, Journal of Algebra, 588 (2021), 278–314.
[6] Arenas M., Arenas-Carmona L., Universal Poisson envelope for binary-Lie algebras, Communications in Algebra, 41 (2013), 5, 1781–1789.
[7] Arenas M., Shestakov I., On speciality of binary-Lie algebras, Journal of Algebra and Its Applications, 10 (2011), 2, 257–268.
[8] Benayadi S., Kaygorodov I., Mhamdi F., Symmetric Zinbiel superalgebras, Communications in Algebra, to appear, arxiv:2203.00311
[9] Burde D., Steinhoff C., Classification of orbit closures of 4–dimensional complex Lie algebras, Journal of Algebra, 214 (1999), 2, 729–739.
[10] Camacho L., Kaygorodov I., Lopatkin V., Salim M., The variety of dual Mock-Lie algebras, Communications in Mathematics, 28 (2020), 2, 161–178.
[11] Ismailov N., Kaygorodov I., Volkov Yu., The geometric classification of Leibniz algebras, International Journal of Mathematics, 29 (2018), 5, 1850035.
[12] Kaygorodov I., Khrypchenko M., Popov Yu., The algebraic and geometric classification of nilpotent terminal algebras, Journal of Pure and Applied Algebra, 225 (2021).
[13] Fernandez Ouaridi A., Kaygorodov I., Khrypchenko M., Volkov Yu., Degenerations of nilpotent algebras, Journal ´of Pure and Applied Algebra, 226 (2022), 3, 106850.
[14] Camacho L., Kaygorodov I., Lopatkin V., Salim M., The variety of dual Mock-Lie algebras, Communications in Mathematics, 28 (2020), 2, 161–178.
[15] Ismailov N.A., Dzhumadil’daev A.S., Unary and binary Leibniz algebras. Mat. Zametki, 2021, Volume 110, Issue 3, P. 336–344.
[16] Kaygorodov I., Popov Yu., Volkov Yu., Degenerations of binary-Lie and nilpotent Malcev algebras, Communications in Algebra, 46 (2018), 11, 4929–4941.
[17] Kaygorodov I., Popov Yu., Pozhidaev A., Volkov Yu., Degenerations of Zinbiel and nilpotent Leibniz algebras, Linear and Multilinear Algebra, 66 (2018), 4, 704–716. [Corrigendum to Degenerations of Zinbiel and nilpotent Leibniz algebras, Linear and Multilinear Algebra, 70 (2022), 5, 993–995.]
[18] Grunewald F., O’Halloran J., Varieties of nilpotent Lie algebras of dimension less than six, Journal of Algebra, 112 (1988), 2, 315–325.
Ergashov, N. I., & Mo‘minova, X. R. (2023). TO‘RT O‘LCHАMLI NILPOTENT UNAR LEYBNITS АLGEBRALARINING TASNIFI. Academic Research in Educational Sciences, 4(2), 232–246. https://doi.org/
Ergashov, Niyozxon, and Xursanoy Mo‘minova,. “TO‘RT O‘LCHАMLI NILPOTENT UNAR LEYBNITS АLGEBRALARINING TASNIFI.” Academic Research in Educational Sciences, vol. 2, no. 4, 2023, pp. 232–246, https://doi.org/.
Ergashov, I. and Mo‘minova, R. 2023. TO‘RT O‘LCHАMLI NILPOTENT UNAR LEYBNITS АLGEBRALARINING TASNIFI. Academic Research in Educational Sciences. 2(4), pp.232–246.