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ABSTRACT 

This article discusses dynamic programming and one of its types dynamic programming by 

subsegments, as well as several examples and solutions to them. 
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INTRODUCTION 

In problems in which it is required to find the optimal answer, different solution methods are 

used: the "brute force" method, "greedy" algorithms, etc. The brute force method is based on 

enumerating all the solutions and choosing the optimal one. In most cases, this approach is relatively 

easy to implement and finds a solution, but cannot be applied with large input data. A greedy 

algorithm always makes the choice that looks best at the moment. That is, it makes a locally optimal 

choice in the hope that this choice will lead to a globally optimal solution[1]. This approach is faster 

than the brute force method and can be applied to large inputs, but sometimes it may not find the 

optimal solution. Dynamic programming(DP) can be another method for solving the problem. The 

idea behind dynamic programming is to split a problem into subtasks and solve them separately 

using the results of other subtasks or previous steps. In order for the problem to be solved by the 

dynamic programming method, the following conditions must be met: in the problem, subtasks of a 

similar structure of a smaller size can be distinguished; among the selected subtasks there are trivial 

ones, that is, having a "small size" and an obvious solution; an optimal solution to a larger 

subproblem can be constructed from optimal solutions to subproblems; subproblem solutions are 

stored in tables with reasonable sizes [2]. Based on the options for using dynamic programming in 

solving problems, the following types can be distinguished: linear, DP by sets, DP by profile, etc. 

Another type is DP by subsegments. This type is used when solving problems in which we can take 

the calculation of values on subsegments of a some array as a subtask, and the answer to the problem 

is the result of calculating a segment of the dimension of the array. 

 

METHOD DESCRIPTION 

The essence of the method consists in splitting an array of values into subsegments and 

finding a solution for subsegments and combining the results. When solving the problem, we 

calculate the results in the order of increasing the length of the subsegments. Thus, when calculating 

the results for subsegments of length L, we use the values for subsegments of 

lengths in the interval [0; L-1]. Usually we use a two-dimensional array dp to 

store the results, where dp [left, right] will store the answer for the segment 
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from left to right. In most cases, due to the use of nested loops, we get asymptotics in time  (  ) or 

 (  ), and in memory  (  ). Below is the pseudocode of the implementation. 

for length=1 to n 

 for left=1 to n-length+1 

  right=left+length-1 

  // calculate the value dp[left,right] 

 

EXAMPLES OF USING 

Problem 1. Let there be a sequence (chain) consisting of n matrices and their product 

          

Matrix multiplication has the property of associativity, so the result does not depend on the 

order of multiplication, but the time spent on calculating the product can strongly depend on this. 

You need to find the minimum number of operations required to calculate the product. The sizes of 

matrices are given in the form of n pairs of arrays h[] and w[],and w[i]=h[i+1] for all indices i that 

satisfy the condition i<n. 

Note. For more details on the problem and solution, see[3] 

Solution. As a subproblem we take dp[i,j] – the minimum number of operations required for 

matrix multiplication in the interval [i; j]. 

Base: dp [i,i]=0. 

Recurrent formula: 

  [   ]     (  [   ]    [     ]   [ ]   [ ]   [ ])           [   ) 

Pseudocode. 

for i=1 to n 

  dp[i,i]=0 

for int length=2 to n 

  for i=1 to n-length+1 

    j=i+length-1  

    dp[i][j]=INF 

    for k=i to j-1      

dp[i,j]=min(dp[i,j],dp[i,k]+dp[k+1,j]+h[i]*w[i]*w[j]) 

output dp[1,n] 

Time complexity:  (  ) 

Problem 2. A palindrome is a string that reads in the same way both from left to right and 

from right to left. Given a string s, you need to find the length of the longest subsequence that can be 

obtained by deleting some letters from the given sequence in such a way that the remaining 

subsequence will be a palindrome. 

Solution. Subproblem dp[i,j] is the length of the longest subsequence of the palindrome in 

the subsegment [i;j]. 

Base: dp[i,i]=1 

Recurrent formula: 

  [   ]  {
  [   ][   ]        [ ]   [ ]

   (  [ ][   ]   [   ][ ])     [ ]   [ ]
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Pseudocode. 

for i=1 to n 

 dp[i,i]=1 

for length=1 to n 

  for i=1 to n-length+1 

    j=i+length-1 

      if s[i] == s[j] 

        dp[i][j]=dp[i+1][j-1]+2 

      else 

        dp[i][j]=max(dp[i][j-1],dp[i+1][j]) 

output dp[1,n] 

Time complexity:  (  ) 

Problem 3. A sequence of n integers is written on the board. Two are playing. On the next 

move, the player selects a number from the right or left side of the sequence, then this number is 

erased and the sequence becomes one number less, and the move goes to the opponent. The winner 

is the one who collects more in total. Find the points that players will gain when playing optimally. 

Solution. Subproblem dp[i, j] – points that the first player will score in the optimal game on 

the subsegment [i; j]. Points are given as an array of numbers w[]. Let's define the function sum(l, 

r) – the sum of the numbers of the array w[] in the range of indices [l; r]. 

Base: dp[i,i]=w[i] 

Recurrent formula: 

{

  [   ]     ( [ ]  [ ])         

  [   ]     (
 [ ]    [     ]     (     ) 

 [ ]    [     ]     (     )
)      

 

 

Pseudocode. 

for i to n 

 dp[i,i]=w[i] 

for i=1 to n 

  for j=1 to n-i+1 

    l=j 

    r=i+j-1 

    if l+1==r 

      dp[l,r]=max(w[l],w[r]) 

    else 

     dp[l,r]=max(w[l]- dp[l+1,r]+sum(l+1,r),     w[r]-dp[l,r-1]+sum(l,r-1)) 

output dp[1,n] // number of points scored by the first player 

output sum(1,n)-dp[1,n]  // number of points scored by the second player 

Time complexity:  (  ) 
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CONCLUSION 

The method we have considered can be used in the problems of finding the optimal answer or 

calculating the number of options that satisfy a certain condition. To use the method for a task, it is 

necessary that we can take a subsegment as a subtask for DP. Thus, this approach can be effective 

for a number of specific tasks. 
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