
Academic Research in Educational Sciences Volume 3 | Issue 3 | 2022

ISSN: 2181-1385 Cite-Factor: 0,89 | SIS: 1,12

DOI: 10.24412/2181-1385-2022-3-525-528 SJIF: 5,7 | UIF: 6,1

525 March, 2022

https://t.me/ares_uz Multidisciplinary Scientific Journal

DYNAMIC PROGRAMMING BY SUBSEGMENTS

I. Z. Iskandarov

B. B. Nurmetova

B. I. Sobirov

Urgench Branch of Tashkent University of Information Technologies

named after Muhammad al-Khwarizmi

E-mails: islom.iskandarov@ubtuit.uz , bonuraxon20102018@gmail.com, bahrombek0960@mail.ru

ABSTRACT

This article discusses dynamic programming and one of its types dynamic programming by

subsegments, as well as several examples and solutions to them.

Keywords: dynamic programming, algorithms, greedy algorithm

INTRODUCTION

In problems in which it is required to find the optimal answer, different solution methods are

used: the "brute force" method, "greedy" algorithms, etc. The brute force method is based on

enumerating all the solutions and choosing the optimal one. In most cases, this approach is relatively

easy to implement and finds a solution, but cannot be applied with large input data. A greedy

algorithm always makes the choice that looks best at the moment. That is, it makes a locally optimal

choice in the hope that this choice will lead to a globally optimal solution[1]. This approach is faster

than the brute force method and can be applied to large inputs, but sometimes it may not find the

optimal solution. Dynamic programming(DP) can be another method for solving the problem. The

idea behind dynamic programming is to split a problem into subtasks and solve them separately

using the results of other subtasks or previous steps. In order for the problem to be solved by the

dynamic programming method, the following conditions must be met: in the problem, subtasks of a

similar structure of a smaller size can be distinguished; among the selected subtasks there are trivial

ones, that is, having a "small size" and an obvious solution; an optimal solution to a larger

subproblem can be constructed from optimal solutions to subproblems; subproblem solutions are

stored in tables with reasonable sizes [2]. Based on the options for using dynamic programming in

solving problems, the following types can be distinguished: linear, DP by sets, DP by profile, etc.

Another type is DP by subsegments. This type is used when solving problems in which we can take

the calculation of values on subsegments of a some array as a subtask, and the answer to the problem

is the result of calculating a segment of the dimension of the array.

METHOD DESCRIPTION

The essence of the method consists in splitting an array of values into subsegments and

finding a solution for subsegments and combining the results. When solving the problem, we

calculate the results in the order of increasing the length of the subsegments. Thus, when calculating

the results for subsegments of length L, we use the values for subsegments of

lengths in the interval [0; L-1]. Usually we use a two-dimensional array dp to

store the results, where dp [left, right] will store the answer for the segment

mailto:islom.iskandarov@ubtuit.uz
mailto:bonuraxon20102018@gmail.com
mailto:bahrombek0960@mail.ru

Academic Research in Educational Sciences Volume 3 | Issue 3 | 2022

ISSN: 2181-1385 Cite-Factor: 0,89 | SIS: 1,12

DOI: 10.24412/2181-1385-2022-3-525-528 SJIF: 5,7 | UIF: 6,1

526 March, 2022

https://t.me/ares_uz Multidisciplinary Scientific Journal

from left to right. In most cases, due to the use of nested loops, we get asymptotics in time () or

 (), and in memory (). Below is the pseudocode of the implementation.

for length=1 to n

 for left=1 to n-length+1

 right=left+length-1

 // calculate the value dp[left,right]

EXAMPLES OF USING

Problem 1. Let there be a sequence (chain) consisting of n matrices and their product

Matrix multiplication has the property of associativity, so the result does not depend on the

order of multiplication, but the time spent on calculating the product can strongly depend on this.

You need to find the minimum number of operations required to calculate the product. The sizes of

matrices are given in the form of n pairs of arrays h[] and w[],and w[i]=h[i+1] for all indices i that

satisfy the condition i<n.

Note. For more details on the problem and solution, see[3]

Solution. As a subproblem we take dp[i,j] – the minimum number of operations required for

matrix multiplication in the interval [i; j].

Base: dp [i,i]=0.

Recurrent formula:

 [] ([] [] [] [] []) [)

Pseudocode.

for i=1 to n

 dp[i,i]=0

for int length=2 to n

 for i=1 to n-length+1

 j=i+length-1

 dp[i][j]=INF

 for k=i to j-1

dp[i,j]=min(dp[i,j],dp[i,k]+dp[k+1,j]+h[i]*w[i]*w[j])

output dp[1,n]

Time complexity: ()

Problem 2. A palindrome is a string that reads in the same way both from left to right and

from right to left. Given a string s, you need to find the length of the longest subsequence that can be

obtained by deleting some letters from the given sequence in such a way that the remaining

subsequence will be a palindrome.

Solution. Subproblem dp[i,j] is the length of the longest subsequence of the palindrome in

the subsegment [i;j].

Base: dp[i,i]=1

Recurrent formula:

 [] {
 [][] [] []

 ([][] [][]) [] []

Academic Research in Educational Sciences Volume 3 | Issue 3 | 2022

ISSN: 2181-1385 Cite-Factor: 0,89 | SIS: 1,12

DOI: 10.24412/2181-1385-2022-3-525-528 SJIF: 5,7 | UIF: 6,1

527 March, 2022

https://t.me/ares_uz Multidisciplinary Scientific Journal

Pseudocode.

for i=1 to n

 dp[i,i]=1

for length=1 to n

 for i=1 to n-length+1

 j=i+length-1

 if s[i] == s[j]

 dp[i][j]=dp[i+1][j-1]+2

 else

 dp[i][j]=max(dp[i][j-1],dp[i+1][j])

output dp[1,n]

Time complexity: ()

Problem 3. A sequence of n integers is written on the board. Two are playing. On the next

move, the player selects a number from the right or left side of the sequence, then this number is

erased and the sequence becomes one number less, and the move goes to the opponent. The winner

is the one who collects more in total. Find the points that players will gain when playing optimally.

Solution. Subproblem dp[i, j] – points that the first player will score in the optimal game on

the subsegment [i; j]. Points are given as an array of numbers w[]. Let's define the function sum(l,

r) – the sum of the numbers of the array w[] in the range of indices [l; r].

Base: dp[i,i]=w[i]

Recurrent formula:

{

 [] ([] [])

 [] (
 [] [] ()

 [] [] ()
)

Pseudocode.

for i to n

 dp[i,i]=w[i]

for i=1 to n

 for j=1 to n-i+1

 l=j

 r=i+j-1

 if l+1==r

 dp[l,r]=max(w[l],w[r])

 else

 dp[l,r]=max(w[l]- dp[l+1,r]+sum(l+1,r), w[r]-dp[l,r-1]+sum(l,r-1))

output dp[1,n] // number of points scored by the first player

output sum(1,n)-dp[1,n] // number of points scored by the second player

Time complexity: ()

Academic Research in Educational Sciences Volume 3 | Issue 3 | 2022

ISSN: 2181-1385 Cite-Factor: 0,89 | SIS: 1,12

DOI: 10.24412/2181-1385-2022-3-525-528 SJIF: 5,7 | UIF: 6,1

528 March, 2022

https://t.me/ares_uz Multidisciplinary Scientific Journal

CONCLUSION

The method we have considered can be used in the problems of finding the optimal answer or

calculating the number of options that satisfy a certain condition. To use the method for a task, it is

necessary that we can take a subsegment as a subtask for DP. Thus, this approach can be effective

for a number of specific tasks.

REFERENCES
[1]. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, “Introduction to

Algorithms”, 3
rd

 ed, pp. 414

[2]. Национальный исследовательский университет «Высшая школа экономики». Факультет

компьютерных наук. Летняя школа по компьютерным наукам. Август. 2016. Параллель С.

Шуйкова И.А. http://shujkova.ru/sites/default/files/lec5.pdf

[3]. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, “Introduction to

Algorithms”, 3
rd

 ed, pp. 370-377.

http://shujkova.ru/sites/default/files/lec5.pdf

