Volume 3 | Issue 5 | 2022 Cite-Factor: 0,89 | SIS: 1,12 SJIF: 5,7 | UIF: 6,1

ПОЛИМЕРИЗАЦИЯ 2-МЕТАКРИЛОИЛАМИНОХИНАЗОЛОНА-4

Мухиддинжон Султанович Мехмонов

Заведующий кафедрой "Естественных наук" Ургенчского филиала Ташкентской медицинской академии, кандидат химических наук

Умирбек Аманбаевич Матниёзов

Магистр 1-курса факультета "Естественных наук" Ургенчского государственного университета

Камолбек Купалович Машарипов

Магистр 1-курса факультета "Естественных наук" Ургенчского государственного университета

АННОТАЦИЯ

Приводятся результаты изучения кинетики фотоинициированной полимеризации 2-метакрилоиламинохиназолона-4 среде апротонного растворителя, определены кинетические константы, характеризующие реакции роста и обрыва полимерных цепей.

Ключевые слова: полимеризация, фотоинициированная, апротонный, аминохиназолон, реакции роста, обрыв цепей.

ABSTRACT

Kinetic reaction of polymerization of 2-methacryloilamino-khinazolone-4 in the media of aprotonic solvent by photoinitiating was studied and kinetic parametres of this reaction was determined.

Keywords: polymerization, photoinitiating, aprotonic, aminokhinazolon, kinetic parametres, reaction was determined.

ВВЕДЕНИЕ

Наиболее простая композиционная система состоит лишь из мономера и фотоинициатора. Фотоинициатор, содержащий так называемую хромофорную группу, поглощает квант излучения определенной длины волны, переходит в возбужденное состояние И диссоциирует два возбужденных свободных радикала, активность которых зависит от их строения (это стадия инициирования). Важно,

https://t.me/ares_uz

May, 2022

Volume 3 | Issue 5 | 2022 Cite-Factor: 0,89 | SIS: 1,12 SJIF: 5,7 | UIF: 6,1

чтобы максимум интервала длин волн поглощения фотоинициатора совпадал с максимумом спектральной полосы излучения источника света. В этом случае эффективность излучения источника света наибольшая. Далее (это стадия роста цепи) возбужденный свободный радикал фотоинициатора присоединяется к ненасыщенной двойной (виниловой) связи мономера и раскрывает ее. При этом образуется новая одинарная химическая связь возле атома углерода и новый радикал (неспаренный электрон) возле другого углеродного атома (алкильный радикал). Многократное присоединение свободного радикала к ненасыщенным двойным связям молекул мономеров приводит к образованию длинной полимерной цепи с неспаренным электроном в ее конце (макрорадикалу). Рост полимерной цепи завершается ее обрывом (это стадия обрыва цепи) путем взаимодействия с другим активным радикалом (рекомбинация, квадратичный обрыв), молекулой ингибитора (ингибирование или замедление) или другим путем (например, диспропорционированием).

Известно, что подбирая условия проведения полимеризации, можно получать полимеры с улучшенными физико-химическим свойствами, а также синтезировать растворимые в органических растворителях полимеры, способные участвовать в полимераналогичных реакциях. Так же известно [1], что при фотоинициированной полимеризации образуются полимеры с сравнительно большей молекулярной массой отличающиеся от олигомеров с многими физико-химическими и механическими свойствами.

Представляло интерес нахождение кинетических закономерностей фотополимеризации 2-метакрилоиламинохиназолона-4 (МАХ) в присутствии динитрил-азо-бис-изомасляной кислоты (ДАК) при различных температурах, содержании мономера и фотоинициатора, интенсивности светового облучения, определение некоторых характеристик поли-2также полученного метакрилоиламинохиназолона-4 (ПМАХ).

МЕТОД ИССЛЕДОВАНИЯ

Кинетику фотополимеризации МАХ исследовали в растворе диметилформамида (ДМФА) с помощью метода вращающегося сектора под действием ультрафиолетового облучения ($\lambda = 365$) в присутствии ДАК. Полимеризация МАХ в отсутствии радикального инициатора не происходит. При кинетических измерениях глубина 5%. конверсии не превышает

Сравнительно низкая обеспечивает вязкость среды необходимый теплообмен и разогревания жидкости

DOI: 10.24412/2181-1385-2022-5-660-665

Volume 3 | Issue 5 | 2022 Cite-Factor: 0,89 | SIS: 1,12 SJIF: 5,7 | UIF: 6,1

дилатометре не происходит. Процесс полимеризации МАХ изучали в растворе диметилформамида при концентрации мономера 0,025-0,10 моль/л при температуре 298-313 К.

РЕЗУЛЬТАТЫ

Для определения кинетических параметров реакции была изучена зависимость скорости реакции от концентрации мономера, инициатора, от температуры и интенсивности облучения. Для изучения порядка реакции по мономеру полимеризацию осуществляли при постоянной концентрации инициатора ([ДАК] = $0.22 \cdot 10^{-3}$ моль/л) и при различных концентрациях мономера.

Из логарифмической зависимости скорости полимеризации от концентрации мономера вычисляли порядок реакции по мономеру, который равен 1,26. Это свидетельствует, что молекулы мономера участвуют в актах инициирования Небольшое обусловлено полимеризации. расхождение зависимостью константы скорости распада инициатора и эффективности инициирования от природы, образованием менее активных радикалов из молекул растворителя. Также допускают возможность образования комплексных соединений между мономером и инициатором и их последующим распадом [2-5].

Полимеризация МАХ в ДМФА протекает с постоянной начальной скоростью, пропорциональной концентрации мономера в первой степени и квадратному корню из интенсивности излучения или концентрации инициатора. Во всех случаях с увеличением концентрации инициатора и продолжительности облучения растет скорость фотополимеризации. Данные кинетики фотополимеризации МАХ в ДМФА показывают, что процесс полимеризации протекает по радикальному механизму и описывается сле-дующим уравнением:

$$V = K \cdot [ДАК]^{0.53} \cdot [MMAX]^{1.26}$$

Влияние температуры на скорость реакции полимеризации МАХ изучали при температурах 298, 303, 308, 313 К ([ММАХ] = 0,05 моль/л, при одинаковой концентрации инициатора [ДАК] = $0.22 \cdot 10^{-3}$ моль/л).

Полученные данные свидетельствует о том, что повышение температуры от 298 до 313 К приводит к увеличению начальной скорости полимеризации. Такая закономерность характерна ДЛЯ свободно-радикальной полимеризации

виниловых мономеров. На основании этих данных была построена логарифмическая зависимость полимеризации от 1/Т по уравнению Аррениуса и рассчитана

Volume 3 | Issue 5 | 2022 Cite-Factor: 0,89 | SIS: 1,12 SJIF: 5,7 | UIF: 6,1

значений суммарной энергии активации, которая равна 57,12 кДж/моль. Эффективная энергия активации полимеризации определяется выражением:

$$E = \frac{1}{2} E_{HH} + (E_p - \frac{1}{2} E_0)$$

где: $E_{\text{ин.}}$, E_{p} и E_{0} – энергии активации инициирования, роста и обрыва цепи. Полученные значения удовлетворительно согласуются с теорией радикальной полимеризации.

Как известно, что n-бензохинон ингибирует полимеризацию многих азотсодержащих мономеров, а также является ингибитором полимеризации МАХ. Для скорости инициирования полимеризации МАХ определения использовали малые количества эффективного ингибитора - n-бензохинона $(0,23-1,85) \cdot 10^{-3}$ моль/л при концентрации ДАК $0,22 \cdot 10^{-3}$ моль/л. Полученные результаты свидетельствует о соблюдении пропорциональности индукционного периода концентрации введенного ингибитора, причем скорость полимеризации после израсходования ингибитора равна скорости полимеризации в его отсутствие. Линейная зависимость индукционного периода от концентрации ингибитора показывает, что с увеличением концентрации бензохинона увеличивается и индукционный период соответственно. Зная концентрацию введенного ингибитора и время индукционного периода, из кинетических данных ингибированной полимеризации МАХ при различной температуре можно определить скорость инициирования [2]. С использованием скорости инициирования и скорости полимеризации МАХ вычислено отношение Кр/Ко^{0,5} по уравнению общей скорости полимеризации:

$$V = V$$
ин.^{0,5} • Кр/Ко^{0,5} • [MAX]

Кинетические параметры фотополимеризации показывают, что при постоянной интенсивности облучения в исследуемом интервале температур скорость инициирования почти не меняется. Величины $Ep-\frac{1}{2}$ Ео согласуются с данными температурной зависимости скорости полимеризации (табл.1).

Для определения констант роста и обрыва цепи полимеризацию проводили при нестационарном режиме, основанном на измерении скорости полимеризации в условиях прерывного освещения, при котором световые импульсы чередуются с периодом затемнения. Интервалы освещения и затемнения при вращении дисков были равны P=1.

DOI: 10.24412/2181-1385-2022-5-660-665

Таблица 1 Определение скорости инициирования и величины $Kp/Ko^{0,5}$ при полимеризации MAX ([ДАК] = $0.22 \cdot 10^{-3}$ моль/л

Volume 3 | Issue 5 | 2022 Cite-Factor: 0,89 | SIS: 1,12

SJIF: 5,7 | UIF: 6,1

Т,К	[X] •10 ³	tинд,	Vин• 10 ⁷	V• 10 ⁷	Kp/Ko ^{0,5}	Е	Ep-1/2Eo		
	моль/л	сек.	моль/л•с	моль/л•с	•10 ³	кДж	:/моль		
$[{ m MAX}] = 0{,}05\ { m моль}/{ m л}:{ m ДМ}\Phi{ m A}$									
298	0,23	750	6,13	1,61	3,42	57,12	35,70		
	0,46	960	9,58						
	0,92	1860	9,89						
	1,85	3780	9,79						
303	0,23	500	9,20	2,11	4,40				
	0,46	1010	9,11						
	0,92	1950	9,43						
	1,85	4100	9,02						
308	0,23	490	9,39	3,00	6,16				
	0,46	990	9,29						
	0,92	1900	9,68						
	1,85	3850	9,61						
313	0,23	470	9,79	4,55	9,20				
	0,46	950	9,68						
	0,92	1860	9,89						
	1,85	3780	9,79						

Для определения времени жизни растущего радикала скорость фотополимеризации измеряли при различных периодах освещения. При этом была найдена скорость фотополимеризации при прерывном освещении (табл.2).

Таблица 2 Определение величины K_p/K_0 при фотополимеризации МАХ в ДМФА ([MAX] = 0,05 моль/л; [ДАК]= 0,22 • 10^{-3} моль/л)

T, K	t, сек.	Vпр./Vнепр.	t/τ	τ, сек.	Кр/Ко * 10 ⁶
298	0,94	0,7143	2,41	0,39	0,676
	1,87	0,6211	10,38	0,18	
	3,75	0,6025	26,78	0,14	
	7,50	0,5714	57,69	0,13	
	15,00	0,5404	-	-	

Построив зависимость $V_{\text{пр.}}/V_{\text{непр.}}$ от $\lg(t/\tau)$ и совместив ее с теоретической кривой, нашли сначала среднюю

664 May, 2022 https://t.me/ares_uz Multidisciplinary Scientific Journal DOI: 10.24412/2181-1385-2022-5-660-665

Volume 3 | Issue 5 | 2022 Cite-Factor: 0,89 | SIS: 1,12 SJIF: 5,7 | UIF: 6,1

продолжительность жизни растущих радикалов – τ ср. [6], а затем Кр/Ко по формуле:

$$Kp/Ko = \tau \cdot V/[MAX].$$

ВЫВОДЫ

- 1. Установлено, что MAX со стабилизирующим фрагментом легко полимеризуется под действием ультрафиолетового облучения в присутствии радикального инициатора ДАК.
- 2. Процесс фотополимеризации протекает по радикальному механизму, а обрыв растущих цепей происходит по бимолекулярному механизму.
- 3. Получается ПМАХ с повышенной термо- и теплостойкостью, высокими физико-механическими показателями и более совершенной микроструктурой.

REFERENCES

- 1. Гизатуллин Р.Р., Леплянин Г.В. //Пласт. массы. 1991. № 5. С.11-12.
- 2. Багдасарьян Х.С. Теория радикальной полимеризации. М.: Наука. 1966. С. 300.
- 3. Henrici Olive G. und Olive S. Uber den Losungsmitteleinflusbei der Radikalpolymerisation. //Die Makromolekulare Chemie. 1963. Bd. 68. S. 219-222.
- 4. Henrici Olive G. und Olive S. Zur Polymerisation von Methyl-methacrylat in Brombenzol. // Die Makromolekulare Chemie. 1966. Bd. 96. S. 221-226.
- 5. Механизмы образования и свойства полимеров. / Под ред. Б.И.Айходжаева. Ташкент.: Фан. 1981. С. 287.
- 6. Гладышев Г.П. Полимеризация винильных мономеров. Алма-Ата. АН КазССР. 1964. С. 322

