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ABSTRACT 

 In this article, we examine the Axiom of Choice and other equivalent 

principles. We will discuss the fact that many mathematical conclusions, which were 

assumed to be clear for years, can be expressed based on the Axiom of choice. 

Choosing ten numbers (they don't have to be unequal) from ten boxes is simple and 

basic. This choice may not be obvious when the number of choices is infinite. All the 

above concepts revolve around the principle called the Axiom of Choice. In this 

article, we present the principles equivalent to the Axiom of Choice with a detailed 

proof, and we also prove some important theorems related to other parts of 

mathematics with the help of the Axiom of Choice and its equivalents. 

 Keywords: Axiom of Choice, Tukey’s Lemma, Principle, Zorn’s Lemma, 

well-Ordered Theorem.   

 

 INTRODUCTION 

 The Axiom of Choice is one of the basic and important principles that a large 

number of mathematical results can be expressed based on it. To express the problem 

precisely, suppose that non-empty sets                 re assumed. We want to 

find the set such that       ,      ,... ,and         This can be done 

in different ways. Now we present a method. Since        we choose      as 

optional. If        then      . If      , then       is selected as before. We 

repeat this method by induction and consider the set   as *            +  It is clear 

that    has the required conditions. 

In the second method, we choose       arbitrarily for          . In the first 

method, a smaller set may be obtained. Now suppose that the non-empty sequence of 

sets *  +    are given and   is the set with the previous conditions. There is no 

problem here either, it is enough to select       first. In the second step, we 

select        and continue this work. It seems that set is obtained. The only 

problem is that the number of operations is infinite. Now suppose that the non-empty 

family of non-empty sets    is given for every    . In this case, the previous 

method cannot be used, because it is not clear which element from 

which set must be selected first. But here too, the problem can be 

solved in another way (using the representation of rational 
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numbers in the form of Frey fractions). This method is not applicable for the family 

*  +     but it seems obvious to find the set  . The goal here is to provide a common 

logic language for situations like the last one. 

 In the early 1880s, Georg Cantor had implicitly used arguments in the proof 

of some theorems, which were essentially equivalent to the principle of choice, but he 

did not notice that he was using a new strong case principle. In 1904, Ernst Zermelo 

(1871-1953) after careful studies, explicitly stated the Axiom of choice and used it to 

prove the well-order theorem. Because no way has been found to make even the well-

known set of real numbers well-ordered, despite the ruling of the well-ordered 

theorem, for at least six years after the appearance of this theorem, many critical 

articles were written about Zermelo's proof. Most of them rejected the Axiom of 

Choice. However, most critics had to admit that if they accepted the Axiom of 

Choice, they could not find fault with Zermelo’s argument for the well-ordered 

thesis, therefore, criticizing the well-ordered thesis would lead to criticizing the 

Axiom of Choice. It seemed that there were only two ways: 

A) Let the principle be that we accept only constructible results and do not accept 

purely existential results, then the methods and areas of mathematics are so limited 

that, outside of calculus, only very small areas can be examined. 

B) To accept the constructible and purely existential results, including the principle of 

the subject of choice, and as a result, solve more problems and develop mathematics. 

To determine which method is wise to follow, the following two problematic 

questions must first be addressed: 

1) Is the Axiom of Choice independent from the principles of the existing subject, or 

is it proved using other principles of the existing subject of mathematics? 

2) Is the Axiom of Choice compatible with other classical principles of mathematics, 

or may adding the Axiom of choice to other principles of classical mathematics cause 

a contradiction? 

 Many mathematicians tried hard to find answers to these two questions. 

Several years later, in 1938, Kurt Gödel (1906 - 1978) answered the second question 

by proving that adding the Axiom of choice to other existing principles of 

mathematics does not create any contradiction. Gödel's discovery gave a lot of 

confidence to the mathematical community and especially to the users of the choice 

axiom. But the research to answer the first question continued. Finally, in 1963, Paul 

Cohen completely answered the question. He proved that the Axiom of choice is 

independent of other existing principles. In other words, the 

Axiom of Choice cannot be proved as a theorem using the 

principles of classical mathematics. 
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Today, the Axiom of Choice is accepted as a new principle, and this principle is used 

more in new real analysis, the theory of cardinal and transfinite ordinal numbers, 

modern algebra, and the field of topology. 

  The Axiom of Choice 

In this part, we first define the product of the arbitrary family of sets, then we express 

its relationship with the Axiom of choice. 

Definition. If   is a set and *  +    is a family indexed by the elements of   , then the 

Cartesian product of this indexed family is shown as ∏      , and We define as 

follows: 

 

∏  

   

 *  (      )
          ( )    + 

If     or one of    is empty, then this product is empty. 

For example, suppose   *     +  and the sets   ,   ,    are given. We want to 

obtain ∏      . According to the above definition, this product is equal to the set of 

all functions defined on the three-element set *     +  which is  ( )      ( )  

       ( )      

∏  

 

   

 *  (        )
*     +  ( )       ( )       ( )    + 

Therefore, each element of this set is a function whose three prices must be 

determined in the numbers     and  . 

 For simplicity, we denote  ( ) as     ( ) as    and  ( ) as    . Basically, we 

display the function as   (        )  From here, the following equality is obtained. 

∏  

 

   

 *(          )                     +           

From here we can conclude that the product of a family of sets is the generalization 

of the Cartesian product of a finite number of sets. 

Therefore, any arbitrary element of the product ∏       is also shown as (  )     

Now we provide a detailed definition of the Axiom of Choice. 

Definition (Axiom of Choice). If     and for each           then ∏          

it can be expressed as the product of the non-empty family of non-empty sets is non-

empty. 

In the special case, if               then        
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In other words, if   is a non-empty set consisting of non-empty sets, then there exists 

a set   such that each element of   contains at least one element. 

Definition. The choice function for a non-empty set   is a function 

   ( )  * +    

Such that, For every     ( )  * +  ( )    . 

The Axiom of Choice states that if   is a non-empty set consisting of non-empty sets, 

then there exists a function 

    ⋃        , 

Such that for each        (  )   . 

In this section, for a better understanding, we recall the following definitions: 

Definition. If (   ) is a partially ordered set and    , then     is called an 

upper bound of  , whenever for each    , we have:    , element   of  (  ) is 

called a maximal element  (  ), whenever the equality     results from two 

conditions (   )    and    . Similarly, the lower bound and minimum of a 

set are defined. In this article, the only order on the family of sets is the order     

Now we will define the family of finite family. 

Definition. The family ℑ of sets is called a finite characteristic family, whenever 

  ℑ if and only if all finite subsets of   are in   ℑ. 

Let (   ) be a partially ordered set. A subset   of   is called a chain whenever any 

two elements of   are comparable. This means that for every two elements of   such 

as    and    ,       or       must. If ℜ is a family of sets, then it is sorted by 

order    A subfamily   of ℜ is called a chain in  ℜ, whenever for both elements 

   and    of  ,       or      . 

For example, let ℜ be the collection of all finite subsets of  . This characteristic 

family is not finite, because all finite subsets of   are in ℜ, but   is not in ℜ (the set 

of natural numbers is infinite). 

Lemma. Suppose ℑ is a finite characteristic family of sets and C is a chain in it, then 

   ℑ. 

Proof. It suffices to show that every finite subset of    is in ℑ. Suppose 

*          + is an arbitrary finite subset of   . Therefore, the sets    ,   , ... and    

exist in   such that      ,      , ... and      . But    ,   , ... and    are 

comparable. So one of them like     includes the others. From here we can conclude 

that *          +     . Since     is an element of the finite 

characteristic family of ℑ, then every finite subset of it including 

*          + is in ℑ and the theorem is proved.  
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The Axiom of Choice and its equivalent principles 

Perhaps more than the obvious Axiom of Choice, its non-obvious equivalents are 

used. 

In this section, we state each of these principles and prove their equivalence. 

Tukey's Lemma. Every finite characteristic family has a maximal element.  

Because the members of the family are characteristic of finite sets, the order on it is 

 . The maximum element in this family; That is, a set like   from that family such 

that if another set from that family like   were true in the condition     , then 

   . 

For example, suppose ℜ is the family of all finite subsets of  . We have already seen 

that this characteristic family is not finite. This family also does not have a maximal 

element, because if the finite set is its maximal element, by adding another element of 

natural numbers to it, we will reach a larger set, which is a contradiction. 

 Let (   ) be a partially ordered set, say   is a maximal chain in it 

Whenever   is a chain, the resulting set by adding another member of   is not a 

chain. This means that the new element is not comparable to at least one of the 

elements of  . 

Hausdorff's Maximality Principle. Every partially ordered set has a maximal chain. 

Zorn's Lemma. Every ordered set in which every chain has an upper bound has a 

maximal element. 

Well-ordered theorem. every set can be well-ordered  

In the sense that for every arbitrary set there is an arrangement with which that set is 

well-ordered. 

In the previous sections, we stated five principles, although we may not have given 

them the name of the principle. For example, we called the name of one of them 

Tukey's Lemma, while we should have said Tukey's Principle. It has been proven that 

the Axiom of Choice is independent of other mathematical principles and its 

acceptance and rejection does not affect the science of mathematics. 

Of course, accepting one of these principles and as a result accepting the other 

equivalent principles (according to the next theorem) makes mathematical proofs 

easier. At the elementary math level, we consider these principles to be known.  

Theorem. The following principles are equivalent. 

A: Axiom of Choice   B: Tukey's Lemma   C: Hausdorff Maximality Principle D: 

Zorn’s Lemma  E: Well-ordered theorem 

Proof. It is enough to show that: 
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The longest part of the proof is the first stage of the proof, the proofs of the 

subsequent parts are simpler. 

In this section, we first define the f-inductive subfamily for the function f from a 

family of sets to a subfamily of it, then we prove the first part (Tukey's Lemma is the 

result of the Axiom of Choice). 

Definition. Suppose   is a family of sets and   is a subfamily of it and   is a 

function from    to  . A subfamily   of    is called  - induced, whenever the 

following three conditions apply: 

a:      b:  ( )     c: If   is a chain in  , then      

part  b It shows the fact that if      then  ( )     

For example, suppose    is the family of all finite subsets of natural numbers, 

          is assumed by the rule  ( )   . Family,    is not  - induced. 

Because with chains 

β  { ،* +،*   +، ،{     ، }، } is in  ,but      is not in    . 

Notice:   *  * ++  is  - induced. 

Now we are going to prove the first part of the theorem (Tukey's Lemma results from 

the Axiom of Choice). 

Suppose that Tukey's lemma is not true, then there exists a non-empty and finite 

characteristic family called Ƒ that does not have a maximal element. 

Therefore, for every   Ƒ, the family   is nonempty as defined below  

                                               {  Ƒ     } 

Since    , then it is clear that *  +  Ƒ is a nonempty family of nonempty sets. 

Therefore, the following non-empty choice function is available:  

                                          Ƒ     Ƒ          ( )        

According to the definition of  , for each    , we have:    ( )  On the other 

hand, according to the finiteness characteristic of   and the definition of  ,   is  - 

induced. Suppose   is the class of all families of  - induced, it is clear that    , 

therefore,   , the intersection of all families in  , is non-empty.  

                                      *           + 

 
 
 is the smallest family  - induced, as a result, for each  - induced     , we have: 

    , we define the collection of   as follows: 

                        *          ،     ( )   +   
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We prove that if     and    
 
, then     or  ( )   . To prove, for each   

member of  , we define the family     as follows: 

                                 {                 ( )   } 

    is an  - induced family of subset   , therefore,        . Now we show that 

   
 
  is  - induced and as a result    

 
. 

A:   does not have any special subset and according to the definition of   and the 

law of antecedent termination,     . 

B: Suppose     we show that f( )    . For this, we must show that if 

   
 
 , and    ( )  then  ( )   ( )  Suppose    

 
 and    ( )   Since  

         , thus         ( )   . 

But according to    ( )  the state  ( )    is impossible, and as a result,    . 

From here, we have two situations,           . If     then according to the 

definition of     ( )     ( ) and therefore  ( )   ( ) and therefore, 

 ( )    , if    , clear is that  ( )   ( ) and therefore,  ( )    . So if  

    , then ( )    . 

C: It should be shown that if   is a chain in  , then       and assume that 

     and      . Because        for every,     , then two situations 

happen: 

 )                    )  ( )          

If the second situation happens, then we reach the following contradiction: 

          ( )    

Therefore, the first state occurs. So for an    , we have:    . If    , Since 

    , then  ( )       and therefore  ( )    , from here the relation 

      results. 

If    , then     and          . This is impossible, because 

 ( )     . From here it is concluded that      and   is an  - induced. 

Therefore,       

Now we complete the proof. If         and        , then     or 

 ( )   . But with the help of the second relation and    ( )  the relation     

is obtained. So  
 
 is a chain. If     

 
, Since  

 
 is of the  - induced family, then 

    . But    ( )    . Since M is the union of all elements of    and since 

 ( )    , therefore  ( )    and this is a contradiction . 

 In this part, we prove the following three conclusions: 
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       Tukey's lemma   Hausdorff's maximality principle   Zorn's lemma  

                                     Well-ordered theorem   Axiom of Choice  

Proof (Tukey's Lemma gives the Maximality principle). 

Let (   ) be a non-empty partially ordered set. If we consider   as the family of all 

chains in  , then it is clear that   is a finite characteristic family. From here it   

Proof (Maximality principle gives Zorn’s Lemma). 

Let (   ) be a non-empty partially ordered set, each chain of which has an upper 

bound. According to Hausdorff's maximality principle, there is a maximal chain   in 

 . Suppose   is an upper bound of  , we show that   is a maximal element of  . 

Suppose it is not so, then member   exists in   such that    . It is clear that 

      * +    is a chain in   that contradicts the maximality of  .   

Proof (The Well-ordered theorem results in the Axiom of Choice). 

Suppose *  +    is a non-empty family of non-empty sets. We well-order the set 

          . Now the function             with the rule  ( )        is in 

∏      . 

To prove (the well-order principle is the result of Zorn’s Lemma): 

By placing an order on non-empty partially ordered family sets, we show that Zorn’s 

Lemma results in the well-ordering theorem. Here, the ordered sets are shown as 

pairs consisting of the set and the order on it. For example, a good order on a one-

element set   * + must contain     , and as a result, our order will be   

*(   )+  So the latter ordered set can be represented as (* +  *(    )+)  

Suppose   is a set. We take   to be the family of all well-ordered subsets of   such as 

  with order    

According to the previous explanation, (* +  *(    )+)    for each    , now we 

place the order   on   . Suppose that (     ) and (     )are in  , we define 

(     )  (     )  which means that       and        or that element   

exists in   that: 

   *              + 

And,      , in this case we say (     )is a continuation of (     ) 

Proof (The Well-ordered theorem is a result of Zorn’s Lemma)                         

Suppose   is an arbitrary non-empty set, suppose   *(     )+    is a chain in    

according to the order  . We put         ,              . The set (   ) 

is well ordered. Therefore, according to Zorn’s Lemma,    has a maximal element 

called (     )       because otherwise, for         the well-ordered    

exists on    * + as follows  

        *(    )      + 
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This content is contradictory to the maximality of (     )  

And this proof completes the case. 

 

Applications 

In this section, with the help of the Axiom of Choice and its equivalents, we prove 

some important theorems of other branches of mathematics. 

Theorem. If       is surjective, it has a right inverse. 

Proof. Since   is surjective, we consider the non-empty collection of non-empty  

sets *   (* +)+    . Therefore, we consider the choice function  

         
  (* + 

With the condition  ( )     (* +)  But the definition of, each      (* +) is true 

under the condition,  ( )   . Among other things, for    ( ), the relation 

 ( ( ))    is obtained. From here it is clear that       is the right inverse of 

 . 

Theorem. If   is a nonempty set, then the function       is surjective if and only 

if    . 

Proof. If   is surjective, then there exists a function       such that 

        , then, for every    ,  ( ( ))     we put     ( ), therefore, 

 (  )    and        the relationship       is also clear, so      . 

On the contrary, assume that      . 

 For every    , the set 

   *      ( )    + 

is non-empty.  

According to the Axiom of Choice in the case of set   , this set will have a choice 

function    ( )  *   +   . Now we define the function       as follows  

       ( ( )   (  ) 

To complete the proof, it is enough to check the relation that         

For each     we have: 

(   )( )   ( ( ))   ( (  )) 

 On the other hand, considering the definition of the choice function, if 

  (  )     then        . So 

(   )( )   ( )    

As another application, we show that every vector space   on the 

scalar field 𝔽 has a basis. 
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We know that for the vector space   on the field 𝔽      is called a basis for  , 

whenever the elements of   are linearly independent, and for each   ⃗   , finite - -

element subset (  depends on the vector  ) of   say    * ⃗⃗⃗⃗    ⃗     ⃗ +  and   

scalars       ,... and    from 𝔽 exist such that: 

 ⃗     ⃗     ⃗       ⃗  

Theorem. Every vector space   on the scalar field  𝔽 has a basis.  

Proof. We consider the collection   consisting of all independent subsets of   , the 

family   is characteristically finite, because if the elements of the set are 

linearly independent, the elements of each of its subsets, including its finite subsets, 

are linearly independent and vice versa. According to the definition, if every finite 

subset of a set is linearly independent, then the elements of the set itself are also 

linearly independent. According to Tukey's lemma,   has a maximal element  . 

According to the definition of  , the elements of   are independent. Now we have to 

show that every element of   like  ⃗ is a linear combination of finite elements of B. If 

 ⃗   , then the sentence is obvious, because  ⃗     ⃗ . Suppose  ⃗   . Considering 

that B is a maximal linearly independent set, the elements of the set     * ⃗+ are 

dependent. Therefore, there are finitely many elements of   that are dependent, one 

of them must be   ⃗⃗⃗ ⃗ So this dependent set is * ⃗   ⃗   ⃗     ⃗ +, which 

* ⃗   ⃗   ⃗     ⃗ + is a subset of  . From here the scalars     ,   ,     … and 

   exist such that: 

   ⃗     ⃗     ⃗       ⃗    

Given that     , it is clear that  ⃗ is a linear combination of elements of  , and 

therefore   is a basis for  . 

Theorem. Suppose   is a vector space on the field 𝔽 and   is a linearly independent 

subset of  . Then there is a basis for   containing the set  . 

Proof. We take the set   consisting of all linearly independent sets in   that contain 

 . It is clear that       . We show that every chain in   has an upper bound. Let 

*  +     be a chain in  , we show that         is a linearly independent set. 

Suppose * ⃗   ⃗     ⃗ +   , from here   index   ,   , .... and    of   exists such that 

 ⃗     , because         , …. and    are elements of the chain *  +     So 

compared, one of them is bigger than the others like    
  From here, the following 

relationship is obtained:   

                                      * ⃗   ⃗     ⃗ +     
 

And since the elements of    
 are independent, then the elements 

* ⃗   ⃗     ⃗ + are independent, so   is a linear independent set. 
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According to Zorn’s Lemma,   has a maximal element. This maximal element is a 

basis for   

 

 CONCLUSION 

 From the topics examined here, it is clear that the Axiom of Choice is one of 

the basic and important principles in mathematics, on which many other 

mathematical results are expressed and proved. 

It has been proven that the Axiom of Choice is independent of other mathematical 

principles and its acceptance and rejection do not affect the science of mathematics. 

This principle is equivalent to several other famous principles and accepting one of 

these principles and as a result, accepting the rest of its equivalent principles makes 

mathematical proofs easier. 
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