GETEROPOLIKONDENSATSION POLIMER FRAGMENTLARINI MODELASHTIRISH SOHASIDAGI IZLANISHLAR
Maqola haqida umumiy ma'lumotlar
Ushbu tadqiqot ishida kengaytirilgan haqiqat (AR) texnologiyalari va hisoblash usullaridan foydalangan holda geteropolikondensatsiya polimerlarini modellashtirish va tahlil qilishni o'rganadi. Tadqiqot polimerlarning konformatsion tahlilini yaxshilash uchun AR-ga asoslangan 3D vizualizatsiya vositalarining integratsiyasini o'rganadi, bu ularning molekulyar xatti-harakatlarini o'rganishning intuitiv va interaktiv usulini ta'minlaydi. Asosiy topilmalar polimer zanjiri tuzilishi va fazoviy orientatsiyaning fizik va kimyoviy xossalarga ta'siri va molekulyar dinamikani tahlil qilishning samarali usullarini ishlab chiqishni o'z ichiga oladi. Ish materialshunoslik, biotibbiyot va atrof-muhit texnologiyasida potentsial qo'llanilishi bilan polimerlarning xatti-harakatlari bo'yicha ilmiy tushunchalarni yaxshilashda ilg'or modellashtirish platformalarining rolini ta'kidlaydi
1. Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1–11.
2. Azuma, R. (1997). A survey of augmented reality. Presence: Teleoperators and Virtual Environments, 6(4), 355–385.
3. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE Computer Graphics and Applications, 21(6), 34–47.
4. Azuma, R., Billinghurst, M., & Klinker, G. (2011). Special section on mobile augmented reality. Computers & Graphics, 35(4), vii–viii.
5. Bacca, J., Baldiris, S., Fabregat, R., Graf, S., & Kinshuk. (2014). Augmented reality trends in education: A systematic review of research and applications. Journal of Educational Technology & Society, 17(4), 133.
6. Billinghurst, M., Belcher, D., Gupta, A., & Kiyokawa, K. (2003). Communication behaviors in colocated collaborative AR interfaces. International Journal of HumanComputer Interaction, 16(3), 395–423.
7. Bond, M., & Buntins, K. (2018). An analysis of the Australasian journal of educational technology 2013–2017. Australasian Journal of Educational Technology, 34(4), 168–183.
8. Bressler, D. M., & Bodzin, A. M. (2013). A mixed methods assessment of students’ flow experiences during a mobile augmented reality science game. Journal of Computer Assisted Learning, 29(6), 505–517.
9. Bujak, K. R., Radu, I., Catrambone, R., MacIntyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536–544.
10. Bursali, H., & Yilmaz, R. M. (2019). Effect of augmented reality applications on secondary school students’ reading comprehension and learning permanency. Computers in Human Behavior, 95, 126–135.
11. Cai, S., Chiang, F.-K., Sun, Y., Lin, C., & Lee, J. J. (2017). Applications of augmented reality-based natural interactive learning in magnetic field instruction. Interactive Learning Environments, 25(6), 778–791.
12. Ceylan, S., & Ozdilek, Z. (2015). Improving a sample lesson plan for secondary science courses within the STEM education. Procedia – Social and Behavioral Sciences, 177, 223–228.
13. Chang, R.-C., Chung, L.-Y., & Huang, Y.-M. (2016). Developing an interactive augmented reality system as a complement to plant education and comparing its effectiveness with video learning. Interactive Learning Environments, 24(6), 1245– 1264.
14. Chang, H. Y., Hsu, Y. S., Wu, H. K., & Tsai, C. C. (2018). Students’ development of socio-scientific reasoning in a mobile augmented reality learning environment. International Journal of Science Education, 40(12), 1410–1431.
15. Chang, S., & Hwang, G. (2018). Impacts of an augmented reality-based flipped learning guiding approach on students’ scientific project performance and perceptions. Computers & Education, 125, 226–239.
16. Chao, J., Chiu, J. L., DeJaegher, C. J., & Pan, E. A. (2016). Sensor-augmented virtual labs: Using physical interactions with science simulations to promote understanding of gas behavior. Journal of Science Education and Technology, 25(1),16–33.
17. Chen, C.-H., Chou, Y.-Y., & Huang, C.-Y. (2016). An augmented-reality-based concept map to support mobile learning for science. The Asia-Pacific Education Researcher, 25(4), 567–578.
18. Chen, C., & Wang, C.-H. (2015). Employing augmented-reality-embedded instruction to disperse the imparities of individual differences in earth science learning. Journal of Science Education and Technology, 24(6), 835–847.
19. Chen, Y.-H., & Wang, C.-H. (2018). Learner presence, perception, and learning achievements in augmented–reality–mediated learning environments. Interactive Learning Environments, 26(5), 695–708.
20. Cheng, K.-H. (2018). Surveying students’ conceptions of learning science by augmented reality and their scientific epistemic beliefs. Journal of Mathematics, Science and Technology Education, 14(4), 1147–1159.
21. Cheng, K.-H., & Tsai, C.-C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449–462.
22. Chiang, T. H. C., Yang, S. J. H., & Hwang, G.-J. (2014). Students’ online interactive patterns in augmented reality-based inquiry activities. Computers & Education, 78, 97–108.
Axmatova, L. ., & Raximov, T. . (2024). GETEROPOLIKONDENSATSION POLIMER FRAGMENTLARINI MODELASHTIRISH SOHASIDAGI IZLANISHLAR. Academic Research in Educational Sciences, 5(12), 142–156. https://doi.org/
Axmatova, Laylo , and Tohir Raximov,. “GETEROPOLIKONDENSATSION POLIMER FRAGMENTLARINI MODELASHTIRISH SOHASIDAGI IZLANISHLAR.” Academic Research in Educational Sciences, vol. 12, no. 5, 2024, pp. 142–156, https://doi.org/.
Axmatova, . and Raximov, . 2024. GETEROPOLIKONDENSATSION POLIMER FRAGMENTLARINI MODELASHTIRISH SOHASIDAGI IZLANISHLAR. Academic Research in Educational Sciences. 12(5), pp.142–156.