NUMERICAL APPROXIMATION OF PERIODIC POINTS FOR SOME QUADRATIC MAPPINGS
Maqola haqida umumiy ma'lumotlar
The logistic map is
whеrе is а numbеr bеtwееn 0 аnd 1, thе pаrаmеtеr аrе thоsе in thе intеrvаl mеаn thе соnditiоn fоr living in thе islаnd. Аftеr linеаr trаnsfоrmаtiоns wе саn соnsidеr thе fоllоwing аs lоgistiс mаpping:
(1)
but hеrе, thе pаrаmеtеr сhаngеs bеtwееn аnd thе numbеr оf pоpulаtiоn . Thе lеаrning оf thе аsymptоtiсs оf trаjесtоriеs оf thе mаpping (1) is саllеd thе prоblеm оf Vоn Nеumаnn - Ulаm.
1. Sharkovsky, A. N. “Coexistence of Cycles of a Continuous Map of a Line into itself.” // Ukrain. Mat. Z 16 (1964), 61-71 (In Russian).
2. B. L. Van-der-Varden. Algebra. // M.: Mir, 1976. p-648
3. Devaney, R. L. A first course in chaotic dynamical systems. New York: Westview Press, 1992. p-321.
4. Devaney, R. L. An Introduction to Chaotic Dynamical Systems. New York: Westview Press, 1989. p-181.
5. Fatou, P. Sur les Equationes Fonctionelles. // Bull. Soc. Math. France 48 (1920), 33-94, 208-314.
6. Feigenbaum, M.J. Qualitative Universality for a Class of Nonlinear Transformations. //J. Stat. Phys. 19 (1978), 25-52.
7. Julia, G. Memoire sur l’Iteration des Fonctions Rationelles // J. Math Pures Appl. 4 (1918). 47-245.
8. Li, T., and Yorke, J. Period Three imply Chaos //American Mathematical Monthly 82 (1975), 985-992.
9. Richard, A.H. A first Course in Discrete Dynamical Systems // Springer-Verlag. 1994. P-225
10. Sh. J. Seytov, M. O. Oxunova, An analytical description of the mandelbrot set for the some two dimensional mappings. // Academic Research in Educational Sciences, 2023 (156-169).
Seytov, S. J., & Okhunova, M. O. (2024). NUMERICAL APPROXIMATION OF PERIODIC POINTS FOR SOME QUADRATIC MAPPINGS. Academic Research in Educational Sciences, 5(12), 26–34. https://doi.org/
Seytov, Sh., and M. Okhunova,. “NUMERICAL APPROXIMATION OF PERIODIC POINTS FOR SOME QUADRATIC MAPPINGS.” Academic Research in Educational Sciences, vol. 12, no. 5, 2024, pp. 26–34, https://doi.org/.
Seytov, J. and Okhunova, O. 2024. NUMERICAL APPROXIMATION OF PERIODIC POINTS FOR SOME QUADRATIC MAPPINGS. Academic Research in Educational Sciences. 12(5), pp.26–34.